
CFUnited Conference
http://cfunited.com 1

Doug Hughes, President - Alagad Inc.

Advanced Model-
Glue Overview

• I’m assuming you already know Model-
Glue

• This session will introduce you to a
range of advanced features in Model-
Glue

• Model-Glue has a lot of hidden features

• We’ll cover a subset of some of the
features

We’ll Cover
• The Include Tag

• Default Events

• Generic Database Messages

• Scaffolding

• Customizing Scaffolding

• Customizing the Model-Glue framework

Our Sample
Application

• Uses all of the features we will be
discussing...

The Include Tag

• Allows you to include a ModelGlue.xml
file into another ModelGlue.xml

• They become part of the same
application

• Include solves a different problem than
the ModelGlue_APP_KEY

Include Tag Example

<include template="Design/config/ModelGlue.xml" />

CFUnited Conference
http://cfunited.com 2

Include Tag is Useful
For....

• Organizing applications into logical
subsets

• Creating reusable “sub-applications
known as ActionPacks

Include Tag Gotchas

• The last event handler with the same
name wins

• You may want to prefix event handlers
and message names with a prefix to
avoid conflicts:

• Example.Index, not just Index

Configuring Included
Applications

• Use the config tag to set additional
viewsMappings or beanMappings:

<config>

<setting name="beanMappings"
value="/Exception/config/ColdSpring.xml" />

<setting name="viewMappings"

value="/Exception/views" />

</config>

• Used only with ActionPacks

Default Messages
• Model-Glue provides several built in “hooks” so you

can do things at certain points during execution.
• Most Model-Glue developers are familiar with default

messages:
• OnRequestStart, OnQueueComplete,

OnRequestEnd
• You can create your own message listeners for these

messages.
• Provides limited control... what if you could have use

an entire event handler?

Default Events
• Model-Glue 2 also provides default events:

• ModelGlue.OnRequestStart
• ModelGlue.OnQueueComplete
• ModelGlue.OnRequestEnd

• You can implement your own event handlers
for these events.
• Can broadcast messages, handle results

and include views!
• Only one of each in an entire application.

ModelGlue.OnRequestSt
art

• Executes before all other event
handlers

<event-handler name="ModelGlue.OnRequestEnd">

<!-- broadcasts, results and views go here -->

</event-handler>

CFUnited Conference
http://cfunited.com 3

ModelGlue.OnQueueComple
te

• Executes after all messages are
broadcast but before views are included

<event-handler name="ModelGlue.OnQueueComplete">

<!-- broadcasts, results and views go here -->

</event-handler>

ModelGlue.OnRequestE
nd

• Executes after all views are included

• Good for a single generic template
<event-handler name="ModelGlue.OnRequestEnd">

<!-- broadcasts, results and views go here -->

</event-handler>

Generic Database
Messages

• Generic Database Messages provide an
easy way to interact with your database:

• List

• Read

• Commit

• Delete

• Requires the use of an ORM

ModelGlue.GenericList
• Lists records for the specified table
<message name="ModelGlue.GenericList">

<argument name="object" value="Customer" />

<argument name="orderBy" value="LastName" />

</message>

• This will run a query of customers
ordered by the LastName field.

• Result is “CustomerQuery” in the event.

ModelGlue.GenericList
Arguments

Object
• The object type to list

QueryName (optional)
• The name of the query.
• Defaults to Object & Query (CustomerQuery)

Criteria (optional)
• A list of values from the event to use as where criteria

OrderBy (optional)
• A column to order the query by

Ascending (optional)
• If true, indicates if the order is ascending

ModelGlue.GenericRead
• Reads a Record for the specified table
<message name="ModelGlue.GenericRead">

<argument name="object" value="Customer" />
<argument name="criteria" value="customerId" />

</message>

• This will load a Record into the event
based on the customerId event value.

• Result is “CustomerRecord” in the
event.

CFUnited Conference
http://cfunited.com 4

ModelGlue.GenericRead
Arguments

Object
• The object type to read

RecordName (optional)
• The name of the resulting Record.
• Defaults to Object & Record (CustomerRecord)

Criteria (optional)
• A list of values from the event to use as criteria when loading

the Record
• If not provided or not matched a new Record will be created
• You can also specify simple expressions such as deleted=0.

ModelGlue.GenericCom
mit

• Commits a Record to the database
<message name="ModelGlue.GenericCommit">

<argument name="object" value="Customer" />
<argument name="criteria" value="customerId" />

</message>

• This will save a CustomerRecord to the
database identified by the customerId
event value.

ModelGlue.GenericCom
mitArguments

Object
• The object type to commit

Criteria (optional)

• A list of values from the event to use as criteria when committing the Record

• If not provided or not matched a new Record will be created

RecordName (optional)

• The name of the resulting Record.

• Defaults to Object & Record (CustomerRecord)

ValidationName (optional)

• The name of the resulting validation structure.

• Defaults to Object & Validation (CustomerValidation)

Properties (optional)

• A comma separated list of properties to try to commit from the Event.

• Defaults to all properties in a Record

ModelGlue.GenericCom
mitResults• ModelGlue.GenericCommit will add one of

two results. You can map them to events as
you want:

commit
• This is added when the Record is

successfully committed.
validationError

• This is added when there are errors
validating the Record before committing
it.

ModelGlue.GenericDelet
e

• Deletes a Record from the specified
table

<message name="ModelGlue.GenericDelete">
<argument name="object" value="Customer" />
<argument name="criteria" value="customerId" />

</message>

• This will delete a Record from the
Customer table based on the
customerId event value.

ModelGlue.GenericDelet
e

Arguments

Object
• The object type to delete

Criteria (optional)
• A list of values from the event to use as criteria when deleting

the Record

CFUnited Conference
http://cfunited.com 5

The Scaffold tag
• Defines event handlers for the specified object

using database metadata.
• The scaffold tag is an extension of the event

handlers tag and can hold all the same children.
• Generates List, View, Edit, Commit, Delete event

handlers in the format Object.Event. For
example: Customer.List:

<scaffold object="Customer" />
• Useful for generating quick administration

interfaces.

Viewing Scaffolds

• To view a scaffold go to a scaffold event
such as Customer.List:

• http://localhost/index.cfm?event=Customer
.List

Customize
Scaffolded Views

• Scaffolds are generated into a path
configured in ColdSpring.xml
• generatedViewMapping

• This is always the last directory Model-
Glue looks in for a view

• Copy the generated view to another view
directory and modify it

• Changes to your database will not be
reflected any more

Broadcasts, Results
and Views

• Because the <scaffold> tag simply is an
extension on the <event-handler> tag it
can hold all of the same child tags.

• Easily allows use of results for
templates, etc.

• Easily allows for use of messages for
security, etc.

Example Scaffold

<scaffold object="Category">

<broadcasts>

<message name="NeedToBeLoggedIn" />

</broadcasts>

</scaffold>

Scaffold Only What
You Want

• Configure Model-Glue to generate only
the scaffolds you want by default:

<property name="defaultScaffolds">
<value>list,edit,view,commit,delete</value>

</property>

• Or, use the Scaffold tag type attribute to
indicate what should be generated:

<scaffold object="Customer" type="List,View">

CFUnited Conference
http://cfunited.com 6

Customize
Scaffolding

• Model-Glue uses a ColdSpring file to control
how scaffolding works:

• /ModelGlue/unity/config/ScaffoldingConfigur
ation.xml

• Specify you own Scaffolding Configuration via
Model-Glue’s ColdSpring configuration:

<property name="scaffoldConfigurationPath">

<value>/Root/config/ScaffoldingConfiguration.xml</value>

</property>

Customize
Scaffolding

• In your Scaffolding Configuration you
can change how Model-Glue does
everything

• You can specify different XSL files

• You can define your own scaffold
types

Customize The
Model-Glue Framework
• Model-Glue is configured by ColdSpring
• /modelglue/unity/config/Configuration.x

ml
• Model-Glue’s core configuration is

loaded before your ColdSpring.xml
• Settings in your ColdSpring.xml override

those in Model-Glue’s Configuration.xml
• Allows you to wire in your own versions

of Model-Glue core files

Customize The
Model-Glue Framework

• Because you can customize the core
framework you can change how parts of
the framework behave.

• This can theoretically work for any part
of Model-Glue

• May or may not be forward compatible
through major versions

Things You Didn’t
Learn

• How to integrate Model-Glue with Flex

• The Flex integration stuff is currently
checked into Subversion

• How to announce asynchronous
messages

• Uses Sean Corfield’s concurrency
library

What You Learned
• How to use the include tag

• How to use Generic Database
Messages

• How to use and customize Scaffolding

• Ways to customize Model-Glue

• Some more areas for study

CFUnited Conference
http://cfunited.com 7

Questions and
Answers

• Doug Hughes, President

• Alagad Inc

• http://www.alagad.com

• dhughes@alagad.com

• (888) Alagad4

